Philosophy 4 Children

This week on Sunday and Monday I took part in Philosophy 4 Children training at our campus. One of our curriculum objectives in Secondary is embed the concepts of Theory of Knowledge (a core component in the IB Diploma Programme) horiztonally and vertically through the Secondary Curriculum. The TOK course is concerned with developing students conceptual understanding of how knowledge is produced and utilized across the subject areas. It challenges kids to think about how knowledge claims can be justified and supported.

At the same time, our primary colleagues have been exploring how Philosophy for Children (P4C) can be used to improve children’s abilities to reason, justify and explain their ideas about broad topics.

One of the benefits of working in a K-12 school is that we can combine PD between Primary and Secondary which allows for some eye opening sharing of teacher classroom practice. This training provided a good opportunity for me as a curriculum leader to not only learn about P4C as a concept and teaching tool, but also to see how it might enable Secondary teachers to get a better grip of managing dialogue and understanding of abstract concepts in the TOK course.

During the training we encountered a variety of warm up activities that can be used to get thinking and discussion going, as well as a full P4C inquiry which is a structured 11 step process for generating a conversation about an abstract question. I am not going to write up all the activities that we did in this post as I tweeted an ongoing thread throughout the training detailing all of the tasks we used.

The first observation I had was that the P4C model of inquiry is highly structured, providing a scaffold for all learners (teachers included) to work through their thinking about a topic. Following the 11 steps from a real stimulus to a discussion about an abstract concept allows even someone who is relatively unconfident in this area to succeed in generating thinking and discussion.

Commentators who were following my thread were quick to point out that int there experience, P4C training was some of the best training for TOK teaching that was available.

Indeed, it became immediately apparent to me that the 11 step full inquiry is a perfect model for generating knowledge questions, one of the key, and most difficult steps for TOK learners to get. Here is a method that can be directly applied in TOK classrooms to help students unpack knowledge questions from a stimulus or real life situation. With practice, I am confident that many teachers would be able to use this model to help them develop TOK thinking.

In other secondary subjects, this model can also help teachers and students to unpack TOK concepts related to their subject area. For example in natural sciences, some of the key TOK concepts relate to models, uncertainty, inductive and deductive reasoning, falsifiability among others. Using the NoS statements from the subject guides with specific real life examples like models used to predict climate change as a stimulus, this model could be directly applied in the IB Biology classroom to help teachers and their students generate knowledge questions from examples in their syllabus.

Recently, I have been thinking about how I can get my IB biology students more engaged with real world issues or deeper conceptual questions like “what is life?”. I have lots of ideas for stimuli but beyond creating a DART or questionnaire linked to the podcast, video or reading I was at a loss as to how to generate deep thinking and discussion.

This tool, I believe, has given me the key to help my students, think about and generate questions in response to stimuli, and provide a basis for fruitful discussion about the topic of interest.

For example, I am thinking about how I can really engage my students with the issue of climate change, so that as well as learning about it from the biology syllabus, the learning develops real meaning and significance for them so that they are inspired to run a CAS project around the issue etc. I had an idea of using some of the recent planet earth documentary as a stimulus but was unsure how to use it. Now, myself, the Lang B teachers and the geography teacher are collaboratively planning to address this topic in sequence and we will think about how we can bring the 11 steps inquiry into our planning.

I am convinced that P4C is an excellent foundation for TOK, both of which are programs that can help student think and question more deeply as well as become more engaged with big ideas and questions.

P4C is broad, it is concerned with thinking about any of a range of concepts that could be thought of as philosophical. TOK is narrower in focus, and, in a Venn diagram, would sit inside the concepts of P4C. P4C can be focussed on knowledge, TOK is concerned only with inquiry about the nature of knowledge. Both programs are concerned with linking the real world stimulus to the abstract theoretical concept. The P4C 11 step scaffold provides an excellent ladder to allow learners to move between the real and the abstract.

A summary of the structure of knowledge

In the final term of this year, I completed an online course on “Theory of Knowledge” from the University of Oxford’s department for continuing education. As part of this course, I have to submit two assignments. The first, which is a summary of the structure of knowledge and limited to around 500 words, was due on the 5th June and I am posting a copy of it below.

A summary of the structure of knowledge

According to Pritchard (2014), we can distinguish between two types of knowledge: knowledge of something or knowledge of how to do something also referred to as propositional knowledge and ability knowledge respectively. It is the first of these that we are interested in in this summary.

Knowledge is valuable because knowledge has instrumental and non-instrumental value. Having knowledge is instrumentally valuable in the sense that it helps us achieve our goals, but it is also non-instrumentally valuable in the sense that having knowledge enriches our lives in and of itself.

To claim to know something is to make a claim or a proposition that a) you believe something and b) that your belief is true. If I claim that it is raining in London while I am living in Lausanne, and assuming that I have no ill intent to deceive those I am talking to, I am making a proposition which I must ultimately believe – how could I claim it was raining if I didn’t ultimately believe it to be so? Intuitively it seems that we cannot claim propositional knowledge if we don’t first believe it.

The claim that we know something “aims at” truth, to use Pritchard’s (2014) phrase. Claiming knowledge intuits at the truth of reality. We don’t normally count someone who holds a false belief as holding knowledge of something. For example, in a pub quiz, someone could be said to be knowledgeable of the topic in question if they hold what is commonly accepted as the “correct” or truthful response. Someone who incorrectly or falsely believes the answer is another proposition cannot be said to know the answer.

Thus, we can say that truth and belief are necessary conditions of knowledge. However, a guess (like a bet) that gets to the truth of the matter (that turns out to be true) is also a claim that contains truth and belief but is not considered knowledge. Under normal circumstances, someone who wins at roulette with the number 29 can’t be said to know that 29 was the correct number, but they did have a true belief that 29 was the number.

Therefore, to count as knowledge, a claim needs have more than truth and belief, it also needs to be justified. Knowledge has historically been counted as justified true belief. All three of these elements are necessary conditions for knowledge but on their own, they are not sufficient conditions for knowledge.

For example, Gettier cases show us that justified true belief isn’t always enough for knowledge. By luck, some agents can still hold true beliefs that are justified but that we would not normally count as knowledge. In the case of an agent who “knows” the time by looking at a stopped clock, if they look at the clock at the “correct” time even though the clock has stopped they will have gained a justified true belief, but they will have done so by luck. If they had looked at the clock five minutes later or five minutes earlier they would have acquired a false belief (Pritchard, 2014).

So, we also need more than justified true belief. We still need to consider the type of justification that is used when combined with true belief. More specifically we need to consider what supports our beliefs in order for them to be justified. There are normally three ways of considering this: a) beliefs do not need to be grounded on anything b) beliefs can be founded on an infinite chain of justifications c) beliefs can be grounded on a circular chain of beliefs. The different schools of thought of infinitism, foundationalism and coherentism offer different responses to this trilemma.

Justification and the support needed for belief is closely linked to rationality. Normally only rational beliefs would be considered knowledge. We can think of a judge who reaches their decision either by weighing up the evidence presented or on the basis of their emotional or prejudice. A judge who rationally weighs up the evidence to reach a verdict can be justified in their true beliefs but a judge who doesn’t, can’t be. However not all rationality is linked to finding the truth and to justify our beliefs we should be concerned with having epistemically rational beliefs. Pascal’s wager is a good example of the difference between epistemically and non-epistemically rationality. In the same vein, we need to consider whether agents can or should be held responsible for their beliefs.

Are people responsible for paying attention to how their beliefs are formed? Can we count a belief as knowledge if the agent in question has not considered how they have formed their belief?

References

Pritchard, D. (2014) What is this thing called knowledge? 3rd edition. Routledge.

 

Review: What if everything you knew about education was wrong?

This Easter holidays I read David Didau’s 350+ page compendium.

Basically, this book is an essential must read for any teacher. It is detailed and covers quite the range of ideas relating to classroom practice. On top of that, it is very well written, with clear and accessible language.

It is broken into four parts.

Part 1 “Why we are wrong” introduces the reader to a few general psychological concepts. Throughout the book, David references Daniel Kahneman’s work “Thinking, Fast and Slow” a lot and I think much of what is written here is sourced from that book, although, perhaps, simplified and certainly written in a much less head scratchy way. If you have read “Thinking, Fast and Slow” many of the ideas about psychological traps and biases will be familiar to you. Still, David is able to show how to apply these concepts succinctly to the classroom setting. He also provides an excellent explanation of effect sizes and the statistical techniques used to compare the effectiveness of classroom interventions before giving some real food for thought as to why this evidence might not be as robust as we think. His critique of Hattie’s work was quite surprising for me and I welcomed the explanation of a concept I had heard lots of people talk about, but nobody has ever explained.

Part 2 lays out what David refers to as the threshold concepts for learning to teach effectively. David unpicks many commonly held myths about classroom teaching and learning and makes an argument as to why many of these cherished ideas are wrong. The key idea here is that learning does not equal the same thing as performance in class. Learning is essentially an invisible process happening in peoples heads and by looking at performance in class we assume that this equates to learning in the mind of the student. Classroom observers look for evidence of “rapid and sustained” learning during class time, however learning, David makes the case for, is messy, non-linear and if it is going to be sustained cannot be rapid. Aside from the difference between learning and performance he covers concepts such the difference between novice and expert learners, the structure of our memory in terms of storage and retrieval strength and cognitive load.

After explaining our cognitive biases and how they apply in education before unpicking many myths about classroom practice held in educational circles, in part 3 David goes on to apply the cognitive concepts from part 2 directly to teaching practice. He gives a clear exposition of interleaving, the spacing effect, the testing effects and the effects of feedback. His writing will prompt you to think about these topics and how they may apply in your own planning and instruction – I know that they certainly have for me.

In the final part, he examines other pet theories in education that we could be wrong about. The first chapter deals with formative assessment and presents a surprising critique of Dylan Wiliams work, with a reply for Dylan Wiliam. There are also chapters on the problems of lesson observations, differentiation, praise among others.

One of the things that I was most surprised about and enjoyed reading was the critiques of the work by very established researchers. The work of both Hattie and Wiliam were picked apart at different points in the book. I am not sure I am fully convinced by the arguments but it was a pleasure to read something that was a little bit different in the sense that I have never come across critical reflections of these, much discussed, in schools at least, concepts before.

I also like the way the book is laid out. Now that I have read it through, I am able to easily go back and find relevant chapters for different concepts again.

This book has given me quite a bit to think about in terms of my curriculum planning and my classroom practice. Despite having just finalised my DP curriculum, I am already prompted by thoughts in this book to review it – particularly in line with David’s thesis that we should plan curriculums around threshold concepts. Doing that first involves identifying them which will probably be the springboard for my next CPD drive. However, I am fully aware that even the threshold concept of threshold concepts may turn out to be an unevidenced and unprovable claim made by education researchers and that my time here will be wasted. Only time will tell!

Goals For This Year (2016-2017)

In this post I am trying to clarify my ideas for my goals and focus of my pedagogical practice for the academic year 2016-17.

Teaching

Firstly following on from my reading this summer and as discussed in an earlier post I want to bring thinking more to the front and centre of classes. By this I mean that I want to make the types of thinking used by scientists more explicit to my students and to help them further develop their thinking dispositions.

1) Learner Profile

I have come to see the learner profile as the the dispositions of a learner. It is these dispositions that we are trying to develop.

Goal #1: Make the Learner Profile front and centre of class.

2) ATLS

If the Learner Profile is the disposition then the ATLS are the tools for developing those dispositions. Highlighting the approaches to learning and showing students how to develop these skills will develop their own learner profile.

In terms of IB teaching, this year I plan to spend more time focussing on the approaches to teaching and learning (ATLs). Thinking skills is a subgroup of this and the work of Ritchhart is referenced by the IB on their ATL guide in the thinking skills section. Ritchhart also talks about the need to make his thinking routines explict, as what students cannot name they cannot own. I think that this applies to all of the approaches to learning and  I am convinced that the methods used to make thinking more explicit would also be beneficial in terms on making all the learning skills more explicit to students, and therefore helping them develop the skills to become independent learners.

I think it would be wise then, to start by making the ATLs and the essential questions of science visible and on display in the laboratory. The same could be said for the TOK classroom and the college counseling office. What are the essential questions in these areas of school life?

In delivering my curriculums I will try to use routines more readily for study and thinking, the challenge now is to work out which routines will be best suited for my subjects in my lesson planning. And develop good routines for the other ATLs not necessarily just the thinking routines.

Goal #2: Make the approaches to learning explicit in class.

3) Thinking routines

A subset of the the ATLS are the thinking skills and routines have been developed by Harvard’s Project Zero. In using thinking routines I need to develop my skills of questioning to make thinking more visible and encourage my students to share their thinking. After all, individual thinking benefits from being challenged; from the need to articulate things clearly to others. Therefore collaboration is the stuff of growth and acts to give students the tools to work together by developing their own thinking skills.

For something to be truly valued it has to be well articulated and identifiable. To value thinking we have to unpack it and identify what it entails in any given situation, therefore leaders of any group need to articulate what kinds of thinking they value – what kinds of thinking do we want in a science class? In TOK class? Vygoytsky stated that children grow into the intellectual life of those around them therefore we need to surround children with thinking.

In the DP Biology course the Nature of Science sections lend themselves perfectly to developing the types of thinking required by scientists.

Steps to thinking involve: honesty with students, essential questions for science. Types of thinking moves. Thinking routines.

Goal #3: Teach for scientific and critical thinking.

4) Concept Inventories

Goal #4: Become more familiar with the research on “threshold concepts” and the Biology “Concept Inventories”

5) EdTech

On the EdTech front I am going to try to integrate Periscope more into my teaching. I think that the app has a lot of potential benefits for schools including the ability for students to connect in a non-threatening way with other students across the world, disseminate information to parents, and getting feedback on my teaching like a digital lesson study.

Twitter and Instagram could also be useful research tool for students and could be co-opted in to class if students are given advice on useful people to follow.

Goal #5: Make more use of Twitter and Periscope in my work in school.

 

 

 

Is Content King?

I have reached a watershed in my thinking about teaching and my philosophy about teaching science.

I trained and begun learning to teach in a school with a very robust academic record. Teachers were considered absolute experts in their field and students were, on the whole, very high achieving but who had high expectations of their teachers academically too.

In this environment I learned that the teacher’s fundamental responsibility was to be an an absolute expert in their field; if you didn’t know everything, and could not answer every question, the community of students would lose faith in you. Or at least that it is what it felt like.

I mentioned in my review of Ritchhart et al of comments made by an ex-colleague of mine which reinforced this sentiment.

In those formative days then learning to teach was about mastering your subject knowledge. Content was King. Delivered in lovely little powerpoint slides where students would simply copy down their notes and then memorise them.

I left that school confidently arrogant that I was an expert in my subject and in the IB. That any school was going to want to employ me after the time that I had spent in that school. And indeed I was partly right. I secured a position as Head of Biology at a prestigious boarding school. The time there was little different. I benefitted from working closely with the chemists and physicists, in a closely knit science department. However the sentiments were the same. Content was King. Our role as science teachers was to deliver the curriculums content. The learner profile was dismissed by the Head of Science as fluff.

Since moving on from that school I have been involved in setting up a school and taking it through its IB authorization process as the only Biology teacher and as one of two or, more recently, three science teachers. I cannot point to any single experience from this time that has been the catalyst but my thinking has begun to change. Perhaps it was being forced to seriously consider the IB’s other bits; the ATLs; the IB Learner profile. Perhaps it was being exposed to and challenged by the MYP. Perhaps it was teaching a new DP Biology syllabus with so much focus on the nature of science. Perhaps it was beginning to teach TOK. Perhaps it was becoming a workshop leader. Perhaps it was working with so many truly excellent IB educators. I don’t know.

But I now question the sentiment that content is king in science teaching.

I am beginning to think, to really think that more important than learning the content, my students need to learn to think. It might sound like an odd thing to write. It certainly feels like an odd thing to write.

I’m sure that many people who aren’t teachers would raise their eyebrows at what I wrote above. Surely, a teachers job is to teach students to think? But it’s not as simple as that. Teaching students to ask strong questions and to develop different thinking dispositions is no simple task. It’s much easier to focus on the curriculum delivery. What are my students supposed to know? Fill the time in with student-centred activities, and group work, debates and presentations and you are doing a good job right?

I’ve moved on from didactic lecture like teaching in my early days to worksheet, activity based teaching but has anything really changed? My students still present as apathetic. School is still something that they just do on the whole. I’m sure most of them forget what they “learn” instead of engaging with the deeper issues.

And this is what I want: I want my students to be engaged, passionate and switched on critically to the world around them and be scientifically literate.

How do I do that when sometimes I question my own scientific literacy?

Perhaps its time to really focus on the thinking and the types of thinking that are needed in science and needed to be developed in students of science. The trouble is I am sometimes not sure that I know what thinking really means…

In Making Thinking Visible Richhart et al (2011) discuss turning the content into a vehicle for teaching and framing certain thinking skills. It is argued that developing thinking skills is important because these skills are the tools that students will take forward into future life when the content is forgotten. They are the tools the future adults will utilize to navigate life.

The thing is, thinking doesn’t just happen. As teachers, we need to be explicit with students about the types of thinking that are useful in certain situations and provide strategies that help students learn to think in these ways. We can’t just leave it up to chance. After all, traditionally, we don’t leave the content up to chance (normally), instead, we are explicit with it. We need to give students the chance to think about their own thinking and what it means to them.

Ritchhart provides a list of “high-leverage thinking moves that serve understanding well”:

  1. Observing closely and describing what is there.
  2. Building explanations and interpretations.
  3. Reasoning with evidence.
  4. Making connections.
  5. Considering different viewpoints and perspectives.
  6. Capturing the heart and forming conclusions
  7. Wondering and asking questions
  8. Uncovering complexity and going below the surface of things

I will be posting these “moves” in my classroom as a start as well as try to relate the activities we are doing to these types of activities.

As science teachers, we need to ask ourselves: What type of thinking is important in science? More specifically what types of thinking do we want to develop in students of science? How is thinking framed in terms of the work that scientists do? What are the essential questions of science?

Clearly, the thinking moves above are addressed by different elements of scientific enquiry. Observing closely is an important part of observational studies and also hypothesis generations so is wondering and asking questions. To generate a hypothesis requires building explanations and reasoning with evidence. When we draw our data out we try to capture the heart of a problem and draw a conclusion,

Once we have a clear idea of this then we can begin to teach the thinking alongside an understanding of the nature of science through well-planned content. The difference is that our learning objective is twinned – we have a thinking objective and a content objective.

Understanding how to teach in this way is important.  Biology teacher Paul Strode has written some articles in this vein. In one he looks at reasoning like a scientist and the other deals with teaching the hypothesis. Although he still focuses on framing the content instead of necessarily framing the questioning, these are good reads. However, I feel that the questioning and thinking strategies needed to become front and centre of the teaching instead of the content.

Thinking relies heavily on questioning. In science we are trying to ask the following questions:

What do I notice?

What does that tell me?

Why does it work like this?

How can I test this idea?

How can I be sure that my findings are valid?

Or, according to strode whose list is below:

Step 1: What claim am I being asked to accept?

Step 2: What evidence supports the claim? Is the evidence valid?

Step 3: Is there another way to interpret the evidence?

Step 4: What other evidence would help me evaluate the alternatives?

Step 5: Is the claim the most reasonable one based on the evidence?

Teaching like this requires teachers to step down as the “font of knowledge” in their classrooms and have the courage to be wrong. I have worked in schools where the culture of the school would simply not allow that to happen.

As Ritchhart points out we need to be able to ask our students authentic questions, meaning that the teacher needs to not know the answer, and if teachers are worried about seemingly not knowing something how can they do this?

This academic year I am going to try and put thinking centre and front in my classroom. I just hope that the crazy timetabling and work-load pressure doesn’t push me back into easy, old habits.