Categories
Teaching & Learning

Notes on making good progress?: Chapter 1

Originally posted on October 28, 2018 @ 7:59 am

In this series of posts I record my notes from Daisy Christodolou’s book “Making good progress? The future of Assessment for Learning” It is quite excellent. You can buy a copy here.

Why didn’t Assessment for Learning transform our schools?

Formative assessment is when teachers use evidence of student learning to adapt instruction to meet student need. It’s focus is on what students need to do to improve, on their weaknesses. Feedback then, needs to be tailored thoughtfully to direct the student in how to improve and allow students to act on that feedback.

Formative assessment should be used to diagnose weakness and feedback should tell students how to improve explicitly. AfL is not just about teachers diagnosing weakness and being responsive it is about students responding to information about their progress. Could be a good model for appraisal too.

There is a tension then, between summative and formative assessment. One is about measuring student progress against the aims of education while formative assessment is about the students finding out what they need to do to improve.

If we can agree on the aims of assessment, there is still a discussion about methods. We either favour the generic-skill method which states that to get better at a particular performance you just need to practice that performance. So if you need to practice critical thinking you just practice it or if you want to get better at writing an essay, you just write lots of them. Or we favour the deliberate practice method. This method breaks the final skill down into its constituent parts and practices those. So footballers practice dribbling, passing, defending and shooting not just playing whole games all the time.

Summative assessment is about assessing progress against the aims of education. Formative assessment is about the methods you choose to meet those aims: generic or deliberate. Depending on which one of these you subscribe too will affect your formative assessment, and thus whether assessment tasks can be used formatively and summatively.

If you believe that skill acquisition is generic then formative assessment tasks will match the final summative task. You will write lots of essays, feedback can be given and a grade awarded. If you believe that the method of deliberate practice is better then you may need to design formative tasks that don’t look like the final task. These tasks cannot be used summatively because they don’t match the final task.

Interestingly, belief in generic skills leads down the road of test prep and narrow focus on exam tasks because this model suggests that to get better at the exams you do need you need to practice taking them.

In my mind the key questions for a school, curriculum level or department that wants to adopt the deliberate practice model should be:

  • What are the key skills being assessed in the final summative tasks (don’t forget that language or maths skills might be a large component of this?
  • What sub-components make up these skills?
  • What tasks can be designed to appropriately formatively assess the development of these sub-skills?
  • What does deliberate practice look like in my subject?
  • How often should progress to the final summative task be measured i.e. how often should we set summative assessments in an academic year that track progress?
Categories
Teaching & Learning

A summary of the structure of knowledge

Originally posted on June 27, 2018 @ 1:20 pm

In the final term of this year, I completed an online course on “Theory of Knowledge” from the University of Oxford’s department for continuing education. As part of this course, I have to submit two assignments. The first, which is a summary of the structure of knowledge and limited to around 500 words, was due on the 5th June and I am posting a copy of it below.

A summary of the structure of knowledge

According to Pritchard (2014), we can distinguish between two types of knowledge: knowledge of something or knowledge of how to do something also referred to as propositional knowledge and ability knowledge respectively. It is the first of these that we are interested in in this summary.

Knowledge is valuable because knowledge has instrumental and non-instrumental value. Having knowledge is instrumentally valuable in the sense that it helps us achieve our goals, but it is also non-instrumentally valuable in the sense that having knowledge enriches our lives in and of itself.

To claim to know something is to make a claim or a proposition that a) you believe something and b) that your belief is true. If I claim that it is raining in London while I am living in Lausanne, and assuming that I have no ill intent to deceive those I am talking to, I am making a proposition which I must ultimately believe – how could I claim it was raining if I didn’t ultimately believe it to be so? Intuitively it seems that we cannot claim propositional knowledge if we don’t first believe it.

The claim that we know something “aims at” truth, to use Pritchard’s (2014) phrase. Claiming knowledge intuits at the truth of reality. We don’t normally count someone who holds a false belief as holding knowledge of something. For example, in a pub quiz, someone could be said to be knowledgeable of the topic in question if they hold what is commonly accepted as the “correct” or truthful response. Someone who incorrectly or falsely believes the answer is another proposition cannot be said to know the answer.

Thus, we can say that truth and belief are necessary conditions of knowledge. However, a guess (like a bet) that gets to the truth of the matter (that turns out to be true) is also a claim that contains truth and belief but is not considered knowledge. Under normal circumstances, someone who wins at roulette with the number 29 can’t be said to know that 29 was the correct number, but they did have a true belief that 29 was the number.

Therefore, to count as knowledge, a claim needs have more than truth and belief, it also needs to be justified. Knowledge has historically been counted as justified true belief. All three of these elements are necessary conditions for knowledge but on their own, they are not sufficient conditions for knowledge.

For example, Gettier cases show us that justified true belief isn’t always enough for knowledge. By luck, some agents can still hold true beliefs that are justified but that we would not normally count as knowledge. In the case of an agent who “knows” the time by looking at a stopped clock, if they look at the clock at the “correct” time even though the clock has stopped they will have gained a justified true belief, but they will have done so by luck. If they had looked at the clock five minutes later or five minutes earlier they would have acquired a false belief (Pritchard, 2014).

So, we also need more than justified true belief. We still need to consider the type of justification that is used when combined with true belief. More specifically we need to consider what supports our beliefs in order for them to be justified. There are normally three ways of considering this: a) beliefs do not need to be grounded on anything b) beliefs can be founded on an infinite chain of justifications c) beliefs can be grounded on a circular chain of beliefs. The different schools of thought of infinitism, foundationalism and coherentism offer different responses to this trilemma.

Justification and the support needed for belief is closely linked to rationality. Normally only rational beliefs would be considered knowledge. We can think of a judge who reaches their decision either by weighing up the evidence presented or on the basis of their emotional or prejudice. A judge who rationally weighs up the evidence to reach a verdict can be justified in their true beliefs but a judge who doesn’t, can’t be. However not all rationality is linked to finding the truth and to justify our beliefs we should be concerned with having epistemically rational beliefs. Pascal’s wager is a good example of the difference between epistemically and non-epistemically rationality. In the same vein, we need to consider whether agents can or should be held responsible for their beliefs.

Are people responsible for paying attention to how their beliefs are formed? Can we count a belief as knowledge if the agent in question has not considered how they have formed their belief?

References

Pritchard, D. (2014) What is this thing called knowledge? 3rd edition. Routledge.

 

Categories
Teaching & Learning

Sequencing facts before concepts: natural selection

Originally posted on May 24, 2018 @ 10:20 am

I have spent a fair amount of time this year reflecting on the application of cognitive science principles in my own biology teaching. There has been plenty written about concepts like interleaving and sequencing in sciences and maths but very little that I have found about how these concepts may apply in biology teaching.

Specifically, I have written up some of my thoughts on sequencing my DP biology curriculum based  on these discussions here.

Some of what I have learned suggests that solid conceptual/abstract understanding can only be developed when novice learners have embedded factual or propositional knowledge in their own mental schemas. In addition, I have tried to think about how principles from cognitive load theory may apply in terms of biology teaching and the sequencing of content.

One example of this has been how I approached the teaching of the concept of natural selection this year for my Y12/G11 mixed SL/HL IB biology class. In the IBDP biology syllabus, this is topic 5.2 and I sequence it after 5.1 “Evidence for evolution” and before 1.5 “The origin of cells”.

I finish the evidence for evolution section by looking at the peppered moth and the changes within the populations studied by Dr Ketterwell, through this online simulation.

In the past, I have taught natural selection by going over the concept of natural selection and then looking at specific examples of it that are mentioned in the syllabus which are antibiotic resistance in bacteria and changes in the beaks of the finches of the Galapagos island of Daphne Major.

This year I sequenced the topic into three lessons (which unintentionally appear to have been interleaved as we are also doing the internal assessment at this point in time and one lesson a week is given over to just the HL students anyway) and taught specific examples of natural selection before finally generalising from these examples to the abstract concept of natural selection.

Lesson 1 – Antibiotic-resistant bacteria

We started with retrieval practice of previous material using a google slide presentation which contained four questions: one using material from the last lesson; another from last week; another from last month and another from the last term. I then asked the students to draw and label a prokaryotic cell. Something that they covered six months ago.

Once completed we moved on to watch some news reports about antibiotic-resistant infections and I asked students to discuss and articulate back to the class what they thought the key message of each of the videos were. These prompted discussion about the general nature of antibiotic resistant bacteria and I used questioning to continue this discussion amongst the class. We also discussed what antibiotics were and why they were used to treat bacterial infections as this was a concept we met when studying the immune system two weeks prior. I highlighted the possible area of confusion for students between the words antibiotic and antibody which I had picked up from examining the previous May session of exams, before going on to explain how bacteria have become resistant to antibiotics.

I then gave the class a past paper question to complete the topic and we reviewed the key points of this question from the mark scheme.

Lesson 2- Finch beak changes on Daphne Major

Again we started with retrieval practice in the same format as in lesson 1. We then conducted a physical simulation as outlined in this practical, where students mimic being finches and collecting food. This was followed by a discussion of the trends we found in the simulation and what this might tell us about birds collecting food in the wild.

We then moved onto exercise 3 from this page and when students had finished the video and quiz I asked them to summarise what happened to the finches in the film.

Lesson 3 – the concept of natural selection

After retrieval practice, we reviewed the definition of evolution we had covered in 5.1 “evidence for evolution” and I highlighted that natural selection was a mechanism by which evolution could occur. I then asked students to think back and name the three examples of natural selection that we had considered in the last few lessons. Once they had written their answers down, I went through those examples and placed them on the board. I then asked students to discuss in pairs the details of each of these examples, before snowballing into a class discussion of the details of each of the three examples: peppered moths, antibiotic-resistant bacteria and changes in finch beaks. While we discussed these I wrote down the key points from each one on a second board with each example in a column so that similar elements from each example ended up in the same row. I then discussed with the students what these key features of each of the examples were and related this to the concept of natural selection. We finished with an example question asking students to describe the process of natural selection using examples.

Categories
Education Teaching & Learning

Why I am not a fan of the MYP

Originally posted on April 9, 2018 @ 8:25 am

I am an IB educator and I believe in the mission of the IB. When I first started teaching the DP I loved the fact that it gave students a broad education, didn’t narrow down their options, allowing room for changes in future interests and personal directions. Perhaps as someone who took three science A Levels, it reflected a choice that I wish I had had, particularly working as an adult in a society where scientific illiteracy is perfectly acceptable but cultural illiteracy is not!

I loved the fact that while each individual subject may be a little lighter than an A Level (thinking specifically about the sciences here) they still maintain rigour and the challenge to students of taking six subjects plus TOK (which is another subject in its own right), an extended essay and their CAS program is no mean feat.

So, as an international educator and somewhat of an IB ideologue (at least in terms of the mission statement, not so much the ATLS), why would I write a post that is critical of the MYP?

What is the MYP?

The MYP is the International Baccalaureate’s Middle Years Programme and as such is the foundation or preparatory course for the Diploma Program years. It can occupy either 2, 3, 4 or 5 years of Secondary schooling with the final two years being in Y10/Y11 or G9/G10. It is one of three programs offered by the IB: the Primary Years Programme, MYP and Diploma Programme.

It is a curriculum framework that has eight subject groups which aims to provide a “broad and balanced education for early adolescents.”

My experience of working with it has been as a Biology teacher, working within the sciences subject group, teaching grades 9 and 10 in a K-12 school that offers the IB’s PYP, MYP and DP. The course I have built is based on the eAssessment curriculum, more on that later.

The MYP model

The guide for the MYP states:

“The MYP is designed for students aged 11 to 16. It provides a framework of learning which encourages students to become creative, critical and reflective thinkers. The MYP emphasizes intellectual challenge, encouraging students to make connections between their studies in traditional subjects and the real world. It fosters the development of skills for communication, intercultural understanding and global engagement—essential qualities for young people who are becoming global leaders.” (Sciences Guide For First Use January 2015 pg 2)

The model above shares many similarities with the DP model: in the centre, we have the IB Learner Profile surrounded by the ATLs and the MYP concepts and global contexts. These concepts and contexts provide a way of enabling interdisciplinary learning – a major feature of the MYP – thus one of the units in science may be built around the concept of systems, a concept that may be shared with another subject group. The aim of using concepts is to help students to make links between the different subjects that they are studying.

In delivering the MYP teachers are given a framework and a unit planner. They are told what concepts and contexts to teach (they can choose from a list of predetermined) but not what content to teach. This leads it open for teachers to construct their own units tailored to local contexts – on the surface an exciting prospect. I think teachers who love the MYP are initially drawn to this aspect that allows freedom and creativity.

While this is true, I worry that as individuals we suffer from a huge number of cognitive biases that may make us think we know, from our experience in the classroom and our own interests, what is the most appropriate content to cover but may, ultimately be wrong about this.

Effects on learning

The first thing that you notice about teaching the MYP, is that there is no curriculum content. While this is laudable for some reasons, I have grown to deeply distrust the MYP’s ideology for this for the following reasons:

Debatable concepts

The IB has a prescribed list of what I consider to be fairly debatable concepts. So as a biology teacher my units will focus on relationships or systems or change. Now there is nothing wrong with these concepts per se, and I can see why they are used: to try to build interdisciplinary connections.

However, they feel a bit arbitrary. Why should these be concepts that relate to and define the sciences and why do they take precedence over other concepts like information or energy for example?

The selection of general concepts assumes that students can easily build concepts from subject knowledge and transfer these concepts from one domain to another but this flies in the face of evidence from cognitive science.

We know from cognitive science that before learners can generalise a concept they need a good store of domain-specific content (facts) in their long-term memory. Once they have built this, then they can begin to develop domain-specific conceptual understanding. Only once they have mastered this can they transfer that knowledge from one domain to another. For more information on this see Dan Willingham’s “Why don’t students like school?

It is important to note that this takes years! Is it entirely appropriate to take this approach to a curriculum for middle schoolers who are still very much novices when it comes to knowledge and learning?

Novices vs Experts

As noted above the IB assumes that novices learn in the same way as experts; it is what underpins the assumption that you can have an interdisciplinary, concept-driven curriculum.

But the IB also assumes that novices learn in the same way as experts by encouraging students to learn from doing and teachers to set up their classroom inquiry in ways that reflect what experts do.

In MYP science we see this with the criterion B and C assessments and the following guidance:

“In every year of MYP sciences, all students must independently complete a scientific investigation that is assessed against criterionB (inquiring and designing) and criterionC (processing and evaluating).” – MYP Sciences guide

This requirement reflects the philosophy that, when it comes to science at least, students learn best when acting like scientists. Don’t get me wrong, I do agree that developing a solid understanding of the scientific method is very important for students. I am just not convinced that having students carry out their own investigations is the best way to achieve that aim. Domain-specific novices do not think or learn in the same way as experts.

Equity

Many authors have written about the effects on knowledge-rich curriculums and their effects on reducing inequality in society (See Daisy Christodoulou’s “Seven Myths About Education“, Lucy Crehan’s “Clever Lands“, and E.D. Hirsch’s “Why Knowledge Matters“). By ensuring a knowledge-rich curriculum schools are able to impact children from impoverished homes to ensure that they are able to become fully engaged citizens when they are older.

Children from poorer socio-economic backgrounds are less likely to have access to books at home and are less likely to be exposed to as many words and ideas in the family home as children from higher income families. This means that schools that serve them must impart the knowledge that will enable them to have a chance of becoming active members of society. In Why Knowledge Matters, E.D. Hirsch explains this at length and I am not going to go further into this here except to say that to my mind, by not imparting a knowledge-rich curriculum the MYP undermines the IB’s wider mission statement. How can the IB aim to create a more peaceful world, if it produces a curriculum model that can be shown to increase inequity?

eAssessments

The MYP can be tested through the eAssessment. The topic list for biology eAssessment is as follows:

Biology eAssessment Topic List – found here

  • Cells (tissues, organs, systems, structure and function; factors affecting human health; physiology; vaccination)
  • Organisms (habitat, ecosystems, interdependency, unity and diversity in life forms; energy transfer and cycles [including nutrient, carbon, nitrogen]; classification)
  • Processes (photosynthesis, cell respiration, aerobic and anaerobic, word and chemical equations)
  • Metabolism (nutrition, digestion, biochemistry and enzymes; movement and transport, diffusion; osmosis; gas exchange; circulation, transpiration and translocation; homeostasis)
  • Evolution (life cycles, natural selection; cell division, mitosis, meiosis; reproduction; biodiversity; inheritance and variation, DNA and genetics)
  • Interactions with environment (tropism, senses, nervous system, receptors and hormones)
  • Interactions between organisms (pathogens/parasites, predator/prey, food chains and webs; competition, speciation and extinction)
  • Human interactions with environments (human influences, habitat change or destruction, pollution/conservation; overexploitation, mitigation of adverse effects)
  • Biotechnology (genetic modification, cloning; ethical implications, genome mapping and application, 3D tissue and organ printing)

A quick scan of this topic list shows something quite revealing. What, exactly does the IB mean by physiology on the first line? This is a large subject in and of itself. I find it strange that the IB doesn’t specify particular types of cells and physiological systems and yet will happily specify “mitosis” or the word and chemical equations of respiration and photosynthesis.

This list has the feeling that it has just been thrown together by looking at the DP course and condensing that with no real thought as to what would actually be taught.

Also, the IB assumes, with the generic topics like physiology that students who have been taught one particular physiological system, like the kidney, will be able to answer questions on the heart. See E.D. Hirsch Why Knowledge Matters Chapter 2 for an explanation of why, in order to be fair, a test has to test a specific body of knowledge.

By having no rigorously defined content, even for the assessment, the IB again, shows a pitiful understanding or knowledge of the evidence from cognitive science about how humans learn. Worse, they willfully put some students and their teachers in line for failure. The fact is if you haven’t studied something and that thing comes up on the test, you just aren’t, as a 15-year-old student, going to be able to answer those questions because you are still a novice in that domain and it is unlikely that you will have learned to think like an expert in 140 hrs of teaching.

The eAssessment course is meant to be delivered with at least 70 hours of teaching in the final two years of the MYP – minimum of 140hrs – just shy of the SL DP course.

Massive workload! Hornets and butterflies

In this post, Joe Kirby writes about hornet and butterflies: ideas in teaching that have either high effort, low impact (hornets) or low effort, high impact (butterflies) – it also makes up a chapter in Battle Hymn.

By its very nature, the MYP is a collaborative project. In fact, one of its huge strengths is that it gets teachers out of their silos and working as a team. But that, collaboration inevitably increases teacher workload. For the reasons that I have outlined above, I think that ultimately, while an asset this collaboration results in low impacts for students.

Some who read this will immediately discount that statement as not chiming with their own experiences. And yes, it can look great when kids are seemingly engaged and enthused but we should not confuse this with learning and as educators, we really need to be aware of our own cognitive biases that may lead us into thinking that something is effective when it isn’t. You can read David Didau’s excellent “what if everything you knew about education was wrong” for more details of that.

But it’s not just the fact that it requires collaboration that increases the workload, it is also the fact that as a framework there is no content, leaving teachers to make content decisions as well. This is incredibly freeing but also, in practical planning terms it pushes the workload up even more and I would argue with little to be said for an increased impact on student learning. Surely a defined and prescribed content list would decrease teacher workload and have the same impact on student learning?

Finally, in its assessment, the MYP is workload heavy. In science, teachers end up having to plan lengthy assessments tasks, with clear instructions that break down the assessment criteria into student-friendly language.

Just planning summative assessments like these tasks, designing and making the supporting materials, is much more workload intense than other systems I have worked with and I am not convinced that it has any more impact on student learning.

Conclusion

I am not writing this to be difficult but I do hope that my thoughts here will lead to some open and honest discussion. I know that certain educational approaches have a lot of emotional appeal. I want to get away fromt this at start talking about what is best for our students rationally.

Categories
Resources Teaching & Learning

Biology EAL Resources

Originally posted on April 14, 2018 @ 9:00 am

General Bio EAL teaching resources

Quizlet deck of 100+ suffixes and prefixes

Suffixes and Prefix list supplied from comments in this post

Suffixes and Prefix list supplied by Gretel vB

IBDP Bio Reources